

TOWARDS IMPROVING SELECTIVE HEARING IN COCHLEAR IMPLANT LISTENERS

Martin Lindenbeck martin.lindenbeck@oeaw.ac.at

Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, A-1010 Vienna

Selective Hearing and Cochlear Implants

Cochlear implants (CIs)

- most successful neuroprosthesis worldwide, surgically implanted
- used in cases of severe-to-profound hearing loss or deafness
- directly stimulate the auditory nerve (AN) with an array of electrodes

Motivation for DOC Project

- CIs have to bridge a gap between electrode array and AN
- In this gap, the electric current spreads and stimulates more neurons than intended for a certain electrode (figure on the right), creating so-called channel interactions
- The stimulation approach determines which information is transmitted with CIs (figure on the left): **HR** transmits mainly speech information, LR mainly directional (interaural time differences, ITD) and pitch information; HR vs. LR trade-off
- In our lab, HR-like SIPI signals were shown to provide LR-like ITD & pitch sensitivity on single electrodes [5, 8]

Approach

- Selective hearing (here: speech plus ITD plus pitch) requires many electrodes to stimulate
- SIPI has to be tested in multi-electrode settings (figure on the left) to assess its potential to improve selective hearing • First step: Dual-electrode stimulation

Current spread and channel interactions

Pulse trains from multiple electrodes sum up in the gap between electrode and neuron. Pulses are interleaved to reduce interactions.

3IFC

Interaural electrode matching [cf. 1, 4] Between ears, insertion depths of electrode arrays

200

Probe

Time Delay (ms)

High-Rate Stimulation (HR)

Low-Rate Stimulation (LR)

Single-electrode CI signals [cf. 5] SIPI is an experimental signal, HR and LR are used in clinical CIs

HR

Between-Electrode Delay

- Between-electrode delay is varied
- Effect of channel interactions on ITD and pitch perception?
- Electrode selection based on fmSTCs and interaural electrode matching (figure on the right)
- Next steps: more electrodes, more complex hearing tasks

L S L

- [1] Bernstein, J. G. W., Jensen, K. K., Stakhovskaya, O. A., Noble, J. H., Hoa, M., Kim, H. J., Shih, R., Kolberg, E., Cleary, M., & Goupell, M. J. (2021). Interaural place-of-stimulation mismatch estimates using CT scans and binaural perception, but not pitch, are consistent in cochlear-implant users. The Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.0359-21.2021
- [2] Blausen.com staff. (2014). Medical gallery of Blausen Medical 2014. WikiJournal of Medicine, 1(2). https://doi.org/10.15347/wjm/2014.010
- [3] Boulet, J., White, M., & Bruce, I. C. (2016). Temporal considerations for stimulating spiral ganglion neurons with cochlear implants. Journal of the Association for Research in Otolaryngology, 17(1), 1–17. https://doi.org/10.1007/s10162-015-0545-5
- [4] Hu, H., & Dietz, M. (2015). Comparison of Interaural Electrode Pairing Methods for Bilateral Cochlear Implants. Trends in Hearing, 19, 1–22. https://doi.org/10.1177/2331216515617143
- [5] Lindenbeck, M. J., Laback, B., Majdak, P., & Srinivasan, S. (2020). Temporal-pitch sensitivity in electric hearing with short inter-pulse intervals. The Journal of the Acoustical Society of America, 147(2), 777–793. https://doi.org/10.1121/10.0000610
- [6] Nelson, D. A., Donaldson, G. S., & Kreft, H. (2008). Forward-masked spatial tuning curves in cochlear implant users. The Journal of the Acoustical Society of America, 123(3), 1522–1543. https://doi.org/10.1121/1.2836786
- [7] Plack, C. J. (2018). *The sense of hearing* (Third edition). Routledge.
- [8] Srinivasan, S., Laback, B., Majdak, P., & Arnoldner, C. (2020). Improving interaural time difference sensitivity using short inter-pulse intervals with amplitude-modulated pulse trains in bilateral cochlear implants. Journal of the Association for Research in Otolaryngology, 21, 105--120. https://doi.org/10.1007/s10162-020-00743-6