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1 Mixed Frequency: A New Estimator and Extension to
GDFMs

In many high dimensional economic time series the univariate time series
occur at different sampling frequencies. The approach described in [1], [2],
and related papers is to directly model the high-frequency system as a VAR
or VARMA system. In [1] generic identifiability for high frequency VAR sys-
tems is established via a blocking approach which is the starting point for
the construction of the new estimator.

1.1 Estimator and Asymptotics

We consider a weakly stationary stochastic process of stock variables (flow
and linear aggregations are also treated) (yt) = (yft

′
yst

′)′, where (yft ) is a
nf × 1 vector observed at t ∈ Z but (yst ) is a ns × 1 vector observed only
at a lower sampling frequency NZ for some N ∈ N. The underlying high
frequency systems is a VAR-system:

yt = A1yt−1 + ... + Apyt−p + νt νt ∼ WN(Σν) (1)
where Σν = q ≤ n is a white noise process. Define a(z) = In−A1z−...−Apz

p

as the lag polynomial. Set νt = bεt where εt ∼ WN(Iq), then Σν = bb′ for b
being a n × q matrix with rank q. Note that we allow q < n, i.e. we allow
(yt) to be a singular VAR process. The parameter space is
Θ =

{
(A1, ..., Ap)| det(a(z)) ̸= 0 ∀z ≤ 1

}
×
{
Σν|Σν = Σ′

ν,Σν ≥ 0,Σν = q
}
.

(2)
The following second moments of (yt) are observed:

γff(h) = yft+hy
f
t

′
h ∈ Z

γsf(h) = yst+hy
f
t

′
h ∈ Z (3)

γss(h) = yst+hy
s
t
′ h ∈ NZ.

The observed outputs (yft | t ∈ Z) and (yst | t ∈ NZ) can be represented by
the blocked process

ỹt =


yft
yst
yft−1

...
yft−N+1

 t ∈ NZ

(ỹt | t ∈ NZ) has a state space representation (see [1]). The population sec-
ond moments of (ỹt) are exactly the observable population second moments
of the high frequency process (yt) described in (3). The goal is to find an es-
timator for the underlying high frequency VAR system based on the blocked
process (ỹt | t ∈ NZ). In a first step a state space system for (ỹt | t ∈ NZ)
is estimated by subspace methods (see [3]). This state space system does
in general not correspond to a VAR system because VAR processes are not
closed under marginalisation. In the second step, we approximate the esti-
mates obtained in the first step by a VAR system. This is done by taking the
appropriate root of the state transition matrix and by approximating it with
the companion matrix corresponding to the high dimensional VAR system.
The main point here is to find the statistically optimal approximation.

1.2 Mixed Frequency Generalised Dynamic Factor Models

We consider a generalised dynamic factor model for stationary square inte-
grable double sequences (xit | i ∈ N, t ∈ Z) as described in [4]:

xit = bi(z)ut︸ ︷︷ ︸
:= χit

+ξit. (4)

where (ut) is a q - dimensional orthonormal white noise process orthogonal
to the idiosyncratic components ξit and bi(L) is a rational filter. We suppose
that the underlying high frequency process has a generalised dynamic factor
representation (4) but is observed at mixed sampling frequency. Our goal
is to develop a denoising procedure, i.e. a procedure providing an estimate
for the latent variables (χit) for this case. This relates to the singular VAR
systems with mixed frequency.

2 Targeted Low Dimensional Subspaces

We aim to find a new dimension reduction method and structure theory for
forecasting a target output variable with a (ultra) high dimensional predictor
vector. We focus on three aspects here: Firstly, the method should be de-
signed for the incorporation of highly disaggregated/granular predictor data
(big time series data) in the regression equation. Secondly, the extraction of
the low dimensional process should be targeted to the output variable that
we want to forecast. Thirdly the procedure should capture sparse and dense
structures in the data correctly (see explanation below).Suppose we have one
or more high dimensional stationary nk × 1 predictor processes (input pro-
cesses) {x(k)t | k = 1, ..., K} and a scalar target variable (yt) which is to be
predicted, where all univariate components have zero mean and finite second
moments. For a n × 1 process (xt) set H(x) := sp{xit | 1 ≤ i ≤ n, t ∈ Z}.
Our goal is to construct low dimensional processes (v

(k)
t ) 1 ≤ k ≤ K from

(x
(k)
t ) which are specifically designed for the purpose of forecasting (yt). The

low dimensional vectors (v
(k)
t ) might be filtered versions or linear combina-

tions of the (x
(k)
t )’s. The final prediction equation might look as follows:

yt+h = α0 + b1(z)v
(1)
t + ... + bK(z)v

(K)
t (5)

+ α1yt−1 + ... + αpyt−p + εt+h

where bk(z) are filters.

3 Graphical Models for High Dimensional Time Series

Networks and graphical models for time series have obtained increasing at-
tention recently. We are interested in the structure, estimation and testing
of (conditional) Granger causality networks. Our interest is on changes of
causality pattern under additive noise and time aggregation, certain kinds
of non-stationarity, and again on the use of mixed frequency data in this
context.

References

[1]B Anderson, M Deistler, E Felsenstein, B Funovits, and M Zamani. Mul-
tivariate AR systems and mixed frequency data: g-identifiability and es-
timation. Econometric Theory, pages 793–826, 2016.

[2]B Anderson, M Deistler, E Felsenstein, and L Koelbl. The structure of
multivariate AR and ARMA systems: Regular and singular systems, the
single and the mixed frequency case. Journal of Econometrics, pages
1–8, 2016.

[3]M Deistler, K Peternell, and W Scherrer. Consistency and relative effi-
ciency of subspace methods. Automatica, pages 1865–1875, 1995.

[4]M Forni and M Lippi. The generalized dynamic factor model: represen-
tation theory. Econometric Theory, 2001.


