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Introduction

Yes-associated protein (YAP) contains intrinsically disordered protein (IDP) regions that play a major role in the Hippo
pathway that regulates organ size, cell proliferation, apoptosis [1], and 1s associated with a wide range of cancers. Therefore, the
binding between YAP and transcriptional enhanced associate domain (TEAD) proteins is an interesting target for cancer
therapy [2]. The crystal structure of the TEAD-binding domain of YAP (50-171) bound to TEAD was recently solved [3].
Nevertheless, further studies revealed that various binding partners of TEAD access similar binding interfaces as YAP [4].
Therefore, our study focuses on the characterization of the intrinsically disordered apo state of YAP.

Results

1 Preformation of the secondary structure elements

The N R, rates are increased in the the a-helix (61-73) and ME5 9586 9T
the Q-loop (86-100) region. This hints at secondary
structure formation. The preformation of the «-helix 1s
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further supported by the secondary structure propensity o 3 Interdependence of the a-helix and the Q—lOOp region
(SSP) score derived from the C*and CP chemical shifts [5].

To observe the preformation of the Q2-loop, we selectively

labeled Phenylalanines with a late metabolic precursor [6] ©P° "¢ P

that enables us to detect NOEs between F95/96-HS and
[.91-H?, 1.91-H°, and M86-HE. These contacts are sufficient
to constitute the C2-loop structure.

. @%@
(As-q 50 On the basis of a recent dissection of the binding interface between YAP and TEAD [7], we
%@ chose crucial sites for mutagenesis. Though, we observe an interdependence between the
preformation of the a-helix and the Q-loop region. Mutations in the a-helix region affect the
30 stability of the Q2-loop region and vice versa. In particular, if one of the crucial hydrophobic
residues in the C2-loop 1s mutated, we observe a significant decrease in the «-helical propensity.
Therefore, we assume that there is a co-stabilization between the two elements via hydrophobic
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interactions (highlighted in green in the figure above).
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2 Paramagnetic relaxation enhancement (PRE)
- . . 4 Disrupting the compact state
The application of PREs via MTSL spin labels (red dots) to probe for long-range (approx. 10- pHng P
35 A) contacts indicates a close spatial proximity between the a-helix and the Q-loop region. o wi 3
Furthermore, if the spin label is placed at position V80 that corresponds to the middle of the < °*
linker region connecting the a-helix and the Q-loop, much less residues in the N-terminus relax 2 II L. 1. _ ol I 7
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too fast for signal detection. The comparison of experimentally derived PREs (left) with PREs Residue number 2
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calculated from the crystal structure of the YAP:TEAD complex (right) indicate that the apo , o5
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c0- c0- crucial for the YAPTEAD binding indicate that YAP is de-compacting upon introduction of these
" . mutations. These findings are further supported by DOSY derived diffusion constants that
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2 0. o decrease upon these mutations. The DOSY data are in good agreement with the observations from
i || ‘ ‘ " 20- ‘ the PRE measurements. Therefore, the de-compaction may have an influence on the kinetic
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Our findings reveal a compact state in YAP that is even more compact than the bound form of
YAP. The preformation of this super-compact state seems to facilitate the interaction with TEAD.
Therefore, we suggest that YAP needs to de-compact to bind to TEAD.
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